Papers
Topics
Authors
Recent
2000 character limit reached

A Quantum Correction To Chaos

Published 22 Jan 2016 in hep-th | (1601.06164v1)

Abstract: We use results on Virasoro conformal blocks to study chaotic dynamics in CFT$_2$ at large central charge c. The Lyapunov exponent $\lambda_L$, which is a diagnostic for the early onset of chaos, receives $1/c$ corrections that may be interpreted as $\lambda_L = \frac{2 \pi}{\beta} \left( 1 + \frac{12}{c} \right)$. However, out of time order correlators receive other equally important $1/c$ suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on $\lambda_L$ that emerges at large $c$, focusing on CFT$_2$ and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.