New Derivatives on Fractal Subset of Real-line
Abstract: In this manuscript we introduced the generalized fractional Riemann-Liouville and Caputo like derivative for functions defined on fractal sets. The Gamma, Mittag-Leffler and Beta functions were defined on the fractal sets. The non-local Laplace transformation is given and applied for solving linear and non-linear fractal equations. The advantage of using these new nonlocal derivatives on fractals subset of real-line lies in the fact that they are used for better modelling of processes with memory effect.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.