On support varieties for Lie superalgebras and finite supergroup schemes (1601.04565v1)
Abstract: We study the spectrum of the cohomology rings of cocommutative Hopf superalgebras, restricted and non-restricted Lie superalgebras, and finite supergroup schemes. We also investigate support varieties in these settings and demonstrate that they have the desirable properties of such a theory. We completely characterize support varieties for finite supergroup schemes over algebraically closed fields of characteristic zero, while for non-restricted Lie superalgebras we obtain results in positive characteristic that are strikingly similar to results of Duflo and Serganova in characteristic zero. Our computations for restricted Lie superalgebras and infinitesimal supergroup schemes provide natural generalizations of foundational results of Friedlander and Parshall and of Bendel, Friedlander, and Suslin in the classical setting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.