Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards a four-loop form factor (1601.04432v1)

Published 18 Jan 2016 in hep-th and hep-ph

Abstract: The four-loop, two-point form factor contains the first non-planar correction to the lightlike cusp anomalous dimension. This anomalous dimension is a universal function which appears in many applications. Its planar part in N = 4 SYM is known, in principle, exactly from AdS/CFT and integrability while its non-planar part has been conjectured to vanish. The integrand of the form factor of the stress-tensor multiplet in N = 4 SYM including the non-planar part was obtained in previous work. We parametrise the difficulty of integrating this integrand. We have obtained a basis of master integrals for all integrals in the four-loop, two-point class in two ways. First, we computed an IBP reduction of the integrand of the N = 4 form factor using massive computer algebra (Reduze). Second, we computed a list of master integrals based on methods of the Mint package, suitably extended using Macaulay2 / Singular. The master integrals obtained in both ways are consistent with some minor exceptions. The second method indicates that the master integrals apply beyond N = 4 SYM, in particular to QCD. The numerical integration of several of the master integrals will be reported and remaining obstacles will be outlined

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.