Papers
Topics
Authors
Recent
2000 character limit reached

Localized Dictionary design for Geometrically Robust Sonar ATR

Published 13 Jan 2016 in cs.CV | (1601.03323v1)

Abstract: Advancements in Sonar image capture have opened the door to powerful classification schemes for automatic target recognition (ATR. Recent work has particularly seen the application of sparse reconstruction-based classification (SRC) to sonar ATR, which provides compelling accuracy rates even in the presence of noise and blur. Existing sparsity based sonar ATR techniques however assume that the test images exhibit geometric pose that is consistent with respect to the training set. This work addresses the outstanding open challenge of handling inconsistently posed test sonar images relative to training. We develop a new localized block-based dictionary design that can enable geometric, i.e. pose robustness. Further, a dictionary learning method is incorporated to increase performance and efficiency. The proposed SRC with Localized Pose Management (LPM), is shown to outperform the state of the art SIFT feature and SVM approach, due to its power to discern background clutter in Sonar images.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.