Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human Attention Estimation for Natural Images: An Automatic Gaze Refinement Approach (1601.02852v1)

Published 12 Jan 2016 in cs.CV, cs.HC, and cs.MM

Abstract: Photo collections and its applications today attempt to reflect user interactions in various forms. Moreover, photo collections aim to capture the users' intention with minimum effort through applications capturing user intentions. Human interest regions in an image carry powerful information about the user's behavior and can be used in many photo applications. Research on human visual attention has been conducted in the form of gaze tracking and computational saliency models in the computer vision community, and has shown considerable progress. This paper presents an integration between implicit gaze estimation and computational saliency model to effectively estimate human attention regions in images on the fly. Furthermore, our method estimates human attention via implicit calibration and incremental model updating without any active participation from the user. We also present extensive analysis and possible applications for personal photo collections.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinsoo Choi (13 papers)
  2. Tae-Hyun Oh (75 papers)
  3. In So Kweon (156 papers)
Citations (9)