Rational approximation to algebraic varieties and a new exponent of simultaneous approximation (1601.02813v3)
Abstract: This paper deals with two main topics related to Diophantine approximation. Firstly, we show that if a point on an algebraic variety is approximable by rational vectors to a sufficiently large degree, the approximating vectors must lie in the topological closure of the rational points on the variety. In many interesting cases, in particular if the set of rational points on the variety is finite, this closure does not exceed the set of rational points on the variety itself. This result enables easier proofs of several known results as special cases. The proof can be generalized in some way and encourages to define a new exponent of simultaneous approximation. The second part of the paper is devoted to the study of this exponent.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.