Papers
Topics
Authors
Recent
2000 character limit reached

Persistence weighted Gaussian kernel for topological data analysis

Published 8 Jan 2016 in math.AT | (1601.01741v2)

Abstract: Topological data analysis (TDA) is an emerging mathematical concept for characterizing shapes in complex data. In TDA, persistence diagrams are widely recognized as a useful descriptor of data, and can distinguish robust and noisy topological properties. This paper proposes a kernel method on persistence diagrams to develop a statistical framework in TDA. The proposed kernel satisfies the stability property and provides explicit control on the effect of persistence. Furthermore, the method allows a fast approximation technique. The method is applied into practical data on proteins and oxide glasses, and the results show the advantage of our method compared to other relevant methods on persistence diagrams.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.