Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Methods of Classification for Power Systems Security Assessment (1601.01675v1)

Published 7 Jan 2016 in cs.AI and cs.LG

Abstract: One of the most promising approaches for complex technical systems analysis employs ensemble methods of classification. Ensemble methods enable to build a reliable decision rules for feature space classification in the presence of many possible states of the system. In this paper, novel techniques based on decision trees are used for evaluation of the reliability of the regime of electric power systems. We proposed hybrid approach based on random forests models and boosting models. Such techniques can be applied to predict the interaction of increasing renewable power, storage devices and swiching of smart loads from intelligent domestic appliances, heaters and air-conditioning units and electric vehicles with grid for enhanced decision making. The ensemble classification methods were tested on the modified 118-bus IEEE power system showing that proposed technique can be employed to examine whether the power system is secured under steady-state operating conditions.

Citations (39)

Summary

We haven't generated a summary for this paper yet.