Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Word Embeddings to Item Recommendation (1601.01356v3)

Published 7 Jan 2016 in cs.LG, cs.CL, cs.IR, and cs.SI

Abstract: Social network platforms can use the data produced by their users to serve them better. One of the services these platforms provide is recommendation service. Recommendation systems can predict the future preferences of users using their past preferences. In the recommendation systems literature there are various techniques, such as neighborhood based methods, machine-learning based methods and matrix-factorization based methods. In this work, a set of well known methods from natural language processing domain, namely Word2Vec, is applied to recommendation systems domain. Unlike previous works that use Word2Vec for recommendation, this work uses non-textual features, the check-ins, and it recommends venues to visit/check-in to the target users. For the experiments, a Foursquare check-in dataset is used. The results show that use of continuous vector space representations of items modeled by techniques of Word2Vec is promising for making recommendations.

Citations (104)

Summary

We haven't generated a summary for this paper yet.