Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Next Item Recommendation: Recommending and Evaluating List of Sequences (2008.13281v1)

Published 30 Aug 2020 in cs.IR

Abstract: Recommender systems (RS) suggest items-based on the estimated preferences of users. Recent RS methods utilise vector space embeddings and deep learning methods to make efficient recommendations. However, most of these methods overlook the sequentiality feature and consider each interaction, e.g., check-in, independent from each other. The proposed method considers the sequentiality of the interactions of users with items and uses them to make recommendations of a list of multi-item sequences. The proposed method uses FastText \cite{bojanowski2016enriching}, a well-known technique in NLP, to model the relationship among the subunits of sequences, e.g., tracks, playlists, and utilises the trained representation as an input to a traditional recommendation method. The recommended lists of multi-item sequences are evaluated by the ROUGE \cite{lin2003automatic,lin2004rouge} metric, which is also commonly used in the NLP literature. The current experimental results reveal that it is possible to recommend a list of multi-item sequences, in addition to the traditional next item recommendation. Also, the usage of FastText, which utilise sub-units of the input sequences, helps to overcome cold-start user problem.

Summary

We haven't generated a summary for this paper yet.