Papers
Topics
Authors
Recent
2000 character limit reached

Geometric invariant theory for graded unipotent groups and applications

Published 3 Jan 2016 in math.AG | (1601.00340v4)

Abstract: Let $U$ be a graded unipotent group over the complex numbers, in the sense that it has an extension $\hat{U}$ by the multiplicative group such that the action of the multiplicative group by conjugation on the Lie algebra of $U$ has all its weights strictly positive. Given any action of $U$ on a projective variety $X$ extending to an action of $\hat{U}$ which is linear with respect to an ample line bundle on $X$, then provided that one is willing to replace the line bundle with a tensor power and to twist the linearisation of the action of $\hat{U}$ by a suitable (rational) character, and provided an additional condition is satisfied which is the analogue of the condition in classical GIT that there should be no strictly semistable points for the action, we show that the $\hat{U}$-invariants form a finitely generated graded algebra; moreover the natural morphism from the semistable subset of $X$ to the enveloping quotient is surjective and expresses the enveloping quotient as a geometric quotient of the semistable subset. Applying this result with $X$ replaced by its product with the projective line gives us a projective variety which is a geometric quotient by $\hat{U}$ of an invariant open subset of the product of $X$ with the affine line and contains as an open subset a geometric quotient of a U-invariant open subset of $X$ by the action of $U$. Furthermore these open subsets of $X$ and its product with the affine line can be described using criteria similar to the Hilbert-Mumford criteria in classical GIT.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.