Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions (1601.00258v3)
Abstract: We consider the infinite horizon risk-sensitive problem for nondegenerate diffusions with a compact action space, and controlled through the drift. We only impose a structural assumption on the running cost function, namely near-monotonicity, and show that there always exists a solution to the risk-sensitive Hamilton-Jacobi-BeLLMan (HJB) equation, and that any minimizer in the Hamiltonian is optimal in the class of stationary Markov controls. Under the additional hypothesis that the coefficients of the diffusion are bounded, and satisfy a condition that limits (even though it still allows) transient behavior, we show that any minimizer in the Hamiltonian is optimal in the class of all admissible controls. In addition, we present a sufficient condition, under which the solution of the HJB is unique (up to a multiplicative constant), and establish the usual verification result. We also present some new results concerning the multiplicative Poisson equation for elliptic operators in $\mathbb{R}d$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.