Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Topological invariants for phase transition points of one-dimensional $\mathbb{Z}_2$ topological systems (1512.07386v1)

Published 23 Dec 2015 in cond-mat.str-el

Abstract: We study topological properties of phase transition points of two topologically non-trivial $\mathbb{Z}_2$ classes (D and DIII) in one dimension by assigning a Berry phase defined on closed circles around the gap closing points in the parameter space of momentum and a transition driving parameter. While the topological property of the $\mathbb{Z}_2$ system is generally characterized by a $\mathbb{Z}_2$ topological invariant, we identify that it has a correspondence to the quantized Berry phase protected by the particle-hole symmetry, and then give a proper definition of Berry phase to the phase transition point. By applying our scheme to some specific models of class D and DIII, we demonstrate that the topological phase transition can be well characterized by the Berry phase of the transition point, which reflects the change of Berry phases of topologically different phases across the phase transition point.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.