2000 character limit reached
Compact leaves of codimension one holomorphic foliations on projective manifolds
Published 21 Dec 2015 in math.CA and math.AG | (1512.06623v2)
Abstract: This article studies codimension one foliations on projective man-ifolds having a compact leaf (free of singularities). It explores the interplay between Ueda theory (order of flatness of the normal bundle) and the holo-nomy representation (dynamics of the foliation in the transverse direction). We address in particular the following problems: existence of foliation having as a leaf a given hypersurface with topologically torsion normal bundle, global structure of foliations having a compact leaf whose holonomy is abelian (resp. solvable), and factorization results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.