Papers
Topics
Authors
Recent
Search
2000 character limit reached

Compact leaves of codimension one holomorphic foliations on projective manifolds

Published 21 Dec 2015 in math.CA and math.AG | (1512.06623v2)

Abstract: This article studies codimension one foliations on projective man-ifolds having a compact leaf (free of singularities). It explores the interplay between Ueda theory (order of flatness of the normal bundle) and the holo-nomy representation (dynamics of the foliation in the transverse direction). We address in particular the following problems: existence of foliation having as a leaf a given hypersurface with topologically torsion normal bundle, global structure of foliations having a compact leaf whose holonomy is abelian (resp. solvable), and factorization results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.