Papers
Topics
Authors
Recent
Search
2000 character limit reached

Penalty schemes with inertial effects for monotone inclusion problems

Published 14 Dec 2015 in math.OC, math.FA, and math.NA | (1512.04428v1)

Abstract: We introduce a penalty term-based splitting algorithm with inertial effects designed for solving monotone inclusion problems involving the sum of maximally monotone operators and the convex normal cone to the (nonempty) set of zeros of a monotone and Lipschitz continuous operator. We show weak ergodic convergence of the generated sequence of iterates to a solution of the monotone inclusion problem, provided a condition expressed via the Fitzpatrick function of the operator describing the underlying set of the normal cone is verified. Under strong monotonicity assumptions we can even show strong nonergodic convergence of the iterates. This approach constitutes the starting point for investigating from a similar perspective monotone inclusion problems involving linear compositions of parallel-sum operators and, further, for the minimization of a complexly structured convex objective function subject to the set of minima of another convex and differentiable function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.