Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedding approximately low-dimensional $\ell_2^2$ metrics into $\ell_1$ (1512.04170v1)

Published 14 Dec 2015 in cs.DS

Abstract: Goemans showed that any $n$ points $x_1, \dotsc x_n$ in $d$-dimensions satisfying $\ell_22$ triangle inequalities can be embedded into $\ell_{1}$, with worst-case distortion at most $\sqrt{d}$. We extend this to the case when the points are approximately low-dimensional, albeit with average distortion guarantees. More precisely, we give an $\ell_{2}{2}$-to-$\ell_{1}$ embedding with average distortion at most the stable rank, $\mathrm{sr}(M)$, of the matrix $M$ consisting of columns ${x_i-x_j}{i<j}$. Average distortion embedding suffices for applications such as the Sparsest Cut problem. Our embedding gives an approximation algorithm for the \sparsestcut problem on low threshold-rank graphs, where earlier work was inspired by Lasserre SDP hierarchy, and improves on a previous result of the first and third author [Deshpande and Venkat, In Proc. 17th APPROX, 2014]. Our ideas give a new perspective on $\ell{2}{2}$ metric, an alternate proof of Goemans' theorem, and a simpler proof for average distortion $\sqrt{d}$. Furthermore, while the seminal result of Arora, Rao and Vazirani giving a $O(\sqrt{\log n})$ guarantee for Uniform Sparsest Cut can be seen to imply Goemans' theorem with average distortion, our work opens up the possibility of proving such a result directly via a Goemans'-like theorem.

Summary

We haven't generated a summary for this paper yet.