Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A face cover perspective to $\ell_1$ embeddings of planar graphs (1903.02758v4)

Published 7 Mar 2019 in cs.DS and cs.CG

Abstract: It was conjectured by Gupta et al. [Combinatorica04] that every planar graph can be embedded into $\ell_1$ with constant distortion. However, given an $n$-vertex weighted planar graph, the best upper bound on the distortion is only $O(\sqrt{\log n})$, by Rao [SoCG99]. In this paper we study the case where there is a set $K$ of terminals, and the goal is to embed only the terminals into $\ell_1$ with low distortion. In a seminal paper, Okamura and Seymour [J.Comb.Theory81] showed that if all the terminals lie on a single face, they can be embedded isometrically into $\ell_1$. The more general case, where the set of terminals can be covered by $\gamma$ faces, was studied by Lee and Sidiropoulos [STOC09] and Chekuri et al. [J.Comb.Theory13]. The state of the art is an upper bound of $O(\log \gamma)$ by Krauthgamer, Lee and Rika [SODA19]. Our contribution is a further improvement on the upper bound to $O(\sqrt{\log\gamma})$. Since every planar graph has at most $O(n)$ faces, any further improvement on this result, will be a major breakthrough, directly improving upon Rao's long standing upper bound. Moreover, it is well known that the flow-cut gap equals to the distortion of the best embedding into $\ell_1$. Therefore, our result provides a polynomial time $O(\sqrt{\log \gamma})$-approximation to the sparsest cut problem on planar graphs, for the case where all the demand pairs can be covered by $\gamma$ faces.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com