Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Topology of Exceptional Orbit Hypersurfaces of Prehomogeneous Spaces (1512.03391v2)

Published 10 Dec 2015 in math.AG and math.AT

Abstract: We consider the topology for a class of hypersurfaces with highly nonisolated singularites which arise as exceptional orbit varieties of a special class of prehomogeneous vector spaces, which are representations of linear algebraic groups with open orbits. These hypersurface singularities include both determinantal hypersurfaces and linear free (and free*) divisors. Although these hypersurfaces have highly nonisolated singularities, we determine the topology of their Milnor fibers, complements and links. We do so by using the action of linear algebraic groups beginning with the complement, instead of using Morse type arguments on the Milnor fibers. This includes replacing the local Milnor fiber by a global Milnor fiber which has a complex geometry resulting from a transitive action of an appropriate algebraic group, yielding a compact model submanifold for the homotopy type of the Milnor fiber. The topology includes the (co)homology (in characteristic 0, and 2 torsion in one family) and homotopy groups, and we deduce the triviality of the monodromy transformations on rational (or complex) cohomology. The cohomology of the Milnor fibers and complements are isomorphic as algebras to exterior algebras or for one family, modules over exterior algebras; and cohomology of the link is, as a vector space, a truncated and shifted exterior algebra, for which the cohomology product structure is essentially trivial. We also deduce from Bott's periodicity theorem, the homotopy groups of the Milnor fibers for determinantal hypersurfaces in the stable range as the stable homotopy groups of the associated infinite dimensional symmetric spaces. Applying a Theorem of Oka we obtain a class of formal linear combinations of exceptional orbit hypersurfaces which have Milnor fibers which are homotopy equivalent to joins of the compact model submanifolds.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.