Papers
Topics
Authors
Recent
Search
2000 character limit reached

Iwasawa theory and $F$-analytic Lubin-Tate $(\varphi,Γ)$-modules

Published 10 Dec 2015 in math.NT | (1512.03383v2)

Abstract: Let $K$ be a finite extension of $\mathbf{Q}_p$. We use the theory of $(\varphi,\Gamma)$-modules in the Lubin-Tate setting to construct some corestriction-compatible families of classes in the cohomology of $V$, for certain representations $V$ of $\mathrm{Gal}(\overline{\mathbf{Q}}_p/K)$. If in addition $V$ is crystalline, we describe these classes explicitly using Bloch-Kato's exponential maps. This allows us to generalize Perrin-Riou's period map to the Lubin-Tate setting.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.