Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High-order ADI scheme for option pricing in stochastic volatility models (1512.02529v1)

Published 8 Dec 2015 in q-fin.CP and math.NA

Abstract: We propose a new high-order alternating direction implicit (ADI) finite difference scheme for the solution of initial-boundary value problems of convection-diffusion type with mixed derivatives and non-constant coefficients, as they arise from stochastic volatility models in option pricing. Our approach combines different high-order spatial discretisations with Hundsdorfer and Verwer's ADI time-stepping method, to obtain an efficient method which is fourth-order accurate in space and second-order accurate in time. Numerical experiments for the European put option pricing problem using Heston's stochastic volatility model confirm the high-order convergence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.