New bounds for bilinear Calderón-Zygmund operators and applications (1512.02400v3)
Abstract: In this work we extend Lacey's domination theorem to prove the pointwise control of bilinear Calder\'on--Zygmund operators with Dini--continuous kernel by sparse operators. The precise bounds are carefully tracked following the spirit in a recent work of Hyt\"onen, Roncal and Tapiola. We also derive new mixed weighted estimates for a general class of bilinear dyadic positive operators using multiple $A_{\infty}$ constants inspired in the Fujii-Wilson and Hrus\v{c}\v{e}v classical constants. These estimates have many new applications including mixed bounds for multilinear Calder\'on--Zygmund operators and their commutators with $BMO$ functions, square functions and multilinear Fourier multipliers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.