Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure (1512.00095v2)
Abstract: We prove results on mixing and mixing rates for toral extensions of nonuniformly expanding maps with subexponential decay of correlations. Both the finite and infinite measure settings are considered. Under a Dolgopyat-type condition on nonexistence of approximate eigenfunctions, we prove that existing results for (possibly nonMarkovian) nonuniformly expanding maps hold also for their toral extensions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.