Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmental Recurrent Neural Networks (1511.06018v2)

Published 18 Nov 2015 in cs.CL and cs.LG

Abstract: We introduce segmental recurrent neural networks (SRNNs) which define, given an input sequence, a joint probability distribution over segmentations of the input and labelings of the segments. Representations of the input segments (i.e., contiguous subsequences of the input) are computed by encoding their constituent tokens using bidirectional recurrent neural nets, and these "segment embeddings" are used to define compatibility scores with output labels. These local compatibility scores are integrated using a global semi-Markov conditional random field. Both fully supervised training -- in which segment boundaries and labels are observed -- as well as partially supervised training -- in which segment boundaries are latent -- are straightforward. Experiments on handwriting recognition and joint Chinese word segmentation/POS tagging show that, compared to models that do not explicitly represent segments such as BIO tagging schemes and connectionist temporal classification (CTC), SRNNs obtain substantially higher accuracies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lingpeng Kong (134 papers)
  2. Chris Dyer (91 papers)
  3. Noah A. Smith (224 papers)
Citations (123)