Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid semi-Markov CRF for Neural Sequence Labeling (1805.03838v1)

Published 10 May 2018 in cs.CL

Abstract: This paper proposes hybrid semi-Markov conditional random fields (SCRFs) for neural sequence labeling in natural language processing. Based on conventional conditional random fields (CRFs), SCRFs have been designed for the tasks of assigning labels to segments by extracting features from and describing transitions between segments instead of words. In this paper, we improve the existing SCRF methods by employing word-level and segment-level information simultaneously. First, word-level labels are utilized to derive the segment scores in SCRFs. Second, a CRF output layer and an SCRF output layer are integrated into an unified neural network and trained jointly. Experimental results on CoNLL 2003 named entity recognition (NER) shared task show that our model achieves state-of-the-art performance when no external knowledge is used.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhi-Xiu Ye (4 papers)
  2. Zhen-Hua Ling (114 papers)
Citations (57)