What Graphs are 2-Dot Product Graphs? (1511.05009v2)
Abstract: Let $d \geq 1$ be an integer. From a set of $d$-dimensional vectors, we obtain a $d$-\dpg\ by letting each vector $\vau$ correspond to a vertex $u$ and by adding an edge between two vertices $u$ and $v$ if and only if their dot product $\va{u} \cdot \va{v} \geq t$, for some fixed, positive threshold~$t$. Dot product graphs can be used to model social networks. Recognizing a $d$-dot product graph is known to be \NP-hard for all fixed $d\geq 2$. To understand the position of $d$-dot product graphs in the landscape of graph classes, we consider the case $d=2$, and investigate how $2$-dot product graphs relate to a number of other known graph classes including a number of well-known classes of intersection graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.