Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimization techniques for multivariate least trimmed absolute deviation estimation (1511.04220v1)

Published 13 Nov 2015 in math.ST, stat.CO, and stat.TH

Abstract: Given a dataset an outlier can be defined as an observation that it is unlikely to follow the statistical properties of the majority of the data. Computation of the location estimate of is fundamental in data analysis, and it is well known in statistics that classical methods, such as taking the sample average, can be greatly affected by the presence of outliers in the data. Using the median instead of the mean can partially resolve this issue but not completely. For the univariate case, a robust version of the median is the Least Trimmed Absolute Deviation (LTAD) robust estimator introduced in~\cite{Tableman1994}, which has desirable asymptotic properties such as robustness, consistently, high breakdown and normality. There are different generalizations of the LTAD for multivariate data, depending on the choice of norm. In~\cite{ChaPitZiou:2015} we present such a generalization using the Euclidean norm and propose a solution technique for the resulting combinatorial optimization problem, based on a necessary condition, that results in a highly convergent local search algorithm. In this subsequent work we use the $L1$ norm to generalize the LTAD to higher dimensions, and show that the resulting mixed integer programming problem has an integral relaxation, after applying an appropriate data transformation. Moreover, we utilize the structure of the problem to show that the resulting LP's can be solved efficiently using a subgradient optimization approach. The robust statistical properties of the proposed estimator are verified by extensive computational results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.