Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

$f$-extremal domains in hyperbolic space (1511.02659v1)

Published 9 Nov 2015 in math.AP and math.DG

Abstract: In this paper we study the geometry and the topology of unbounded domains in the Hyperbolic Space $\mathbb{H} n$ supporting a bounded positive solution to an overdetermined elliptic problem. Under suitable conditions on the elliptic problem and the behaviour of the bounded solution at infinity, we are able to show that symmetries of the boundary at infinity imply symmetries on the domain itself. In dimension two, we can strengthen our results proving that a connected domain $\Omega \subset \mathbb{H} 2$ with $C2$ boundary whose complement is connected and supports a bounded positive solution $u$ to an overdetermined problem, assuming natural conditions on the equation and the behaviour at infinity of the solution, must be either a geodesic ball or, a horodisk or, a half-space determined by a complete equidistant curve or, the complement of any of the above example. Moreover, in each case, the solution $u$ is invariant by the isometries fixing $\Omega$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.