Dimensional reduction and localization of a Bose-Einstein condensate in a quasi-1D bichromatic optical lattice (1511.02501v2)
Abstract: We analyze the localization of a Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasi-periodic optical-lattice potential by numerically solving the 1D Gross-Pitaevskii equation (1D GPE). We first derive the 1D GPE from the dimensional reduction of the 3D quantum field theory of interacting bosons obtaining two coupled differential equations (for axial wavefuction and space-time dependent transverse width) which reduce to the 1D GPE under strict conditions. Then, by using the 1D GPE we report the suppression of localization in the interacting BEC when the repulsive scattering length between bosonic atoms is sufficiently large.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.