Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation (1511.01945v3)

Published 5 Nov 2015 in math.AP, math.CA, math.FA, and math.PR

Abstract: We develop the regularity theory for solutions to space-time nonlocal equations driven by fractional powers of the heat operator $$(\partial_t-\Delta)su(t,x)=f(t,x),\quad\hbox{for}~0<s<1.$$ This nonlocal equation of order $s$ in time and $2s$ in space arises in Nonlinear Elasticity, Semipermeable Membranes, Continuous Time Random Walks and Mathematical Biology. It plays for space-time nonlocal equations like the generalized master equation the same role as the fractional Laplacian for nonlocal in space equations. We obtain a pointwise integro-differential formula for $(\partial_t-\Delta)su(t,x)$ and parabolic maximum principles. A novel extension problem to characterize this nonlocal equation with a local degenerate parabolic equation is proved. We show parabolic interior and boundary Harnack inequalities, and an Almgrem-type monotonicity formula. H\"older and Schauder estimates for the space-time Poisson problem are deduced using a new characterization of parabolic H\"older spaces. Our methods involve the \textit{parabolic language of semigroups} and the Cauchy Integral Theorem, which are original to define the fractional powers of $\partial_t-\Delta$. Though we mainly focus in the equation $(\partial_t-\Delta)su=f$, applications of our ideas to variable coefficients, discrete Laplacians and Riemannian manifolds are stressed out.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.