Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Dynamic Splitting Method with an application to portfolio credit risk (1511.00326v1)

Published 1 Nov 2015 in stat.CO

Abstract: We consider the problem of accurately measuring the credit risk of a portfolio consisting of loss exposures such as loans, bonds and other financial assets. We are particularly interested in the probability of large portfolio losses. We describe the popular models in the credit risk framework including factor models and copula models. To this end, we revisit the most efficient probability estimation algorithms within current copula credit risk literature, namely importance sampling. We illustrate the workings and developments of these algorithms for large portfolio loss probability estimation and quantile estimation. We then propose a modification to the dynamic splitting method which allows application to the credit risk models described. Our proposed algorithm for the unbiased estimation of rare-event probabilities, exploits the quasi-monotonic property of functions to embed a static simulation problem within a time-dependent Markov process. A study of our proposed algorithm is then conducted through numerical experiments with its performance benchmarked against current popular importance sampling algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.