Exact Lyapunov exponents of the generalized Boole transformations (1510.08569v3)
Abstract: The generalized Boole transformations have rich behavior ranging from the \textit{mixing} phase with the Cauchy invariant measure to the \textit{dissipative} phase through the \textit{infinite ergodic} phase with the Lebesgue measure. In this Letter, by giving the proof of mixing property for $0<\alpha<1$ we show an \textit{analytic} formula of the Lyapunov exponents $\lambda$ which are explicitly parameterized in terms of the parameter $\alpha$ of the generalized Boole transformations for the whole region $\alpha>0$ and bridge those three phase \textit{continuously}. We found the different scale behavior of the Lyapunov exponent near $\alpha=1$ using analytic formula with the parameter $\alpha$. In particular, for $0<\alpha<1$, we then prove an existence of extremely sensitive dependency of Lyapunov exponents, where the absolute values of the derivative of Lyapunov exponents with respect to the parameter $\alpha$ diverge to infinity in the limit of $\alpha\to 0$, and $\alpha \to 1$. This result shows the computational complexity on the numerical simulations of the Lyapunov exponents near $\alpha \simeq$ 0, 1.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.