Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enumerative geometry of elliptic curves on toric surfaces (1510.08556v3)

Published 29 Oct 2015 in math.AG and math.CO

Abstract: We establish the equality of classical and tropical curve counts for elliptic curves on toric surfaces with fixed $j$-invariant, refining results of Mikhalkin and Nishinou--Siebert. As an application, we determine a formula for such counts on $\mathbb P2$ and all Hirzebruch surfaces. This formula relates the count of elliptic curves with the number of rational curves on the surface satisfying a small number of tangency conditions with the toric boundary. Furthermore, the combinatorial tropical multiplicities of Kerber and Markwig for counts in $\mathbb P2$ are derived and explained algebro-geometrically, using Berkovich geometry and logarithmic Gromov--Witten theory. As a consequence, a new proof of Pandharipande's formula for counts of elliptic curves in $\mathbb P2$ with fixed $j$-invariant is obtained.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.