Affine Automorphisms of Rooted Trees (1510.08434v1)
Abstract: We introduce a class of automorphisms of rooted $d$-regular trees arising from affine actions on their boundaries viewed as infinite dimensional vector spaces. This class includes, in particular, many examples of self-similar realizations of lamplighter groups. We show that for a regular binary tree this class coincides with the normalizer of the group of all spherically homogeneous automorphisms of this tree: automorphisms whose states coincide at all vertices of each level. We study in detail a nontrivial example of an automaton group that contains an index two subgroup with elements from this class and show that it is isomorphic to the index 2 extension of the rank 2 lamplighter group $\mathbb Z_22\wr\mathbb Z$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.