Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SU(2)/SL(2) knot invariants and KS monodromies (1510.05366v1)

Published 19 Oct 2015 in hep-th, math.GT, and math.QA

Abstract: We review the Reshetikhin-Turaev approach to construction of non-compact knot invariants involving R-matrices associated with infinite-dimensional representations, primarily those made from Faddeev's quantum dilogarithm. The corresponding formulas can be obtained from modular transformations of conformal blocks as their Kontsevich-Soibelman monodromies and are presented in the form of transcendental integrals, where the main issue is manipulation with integration contours. We discuss possibilities to extract more explicit and handy expressions which can be compared with the ordinary (compact) knot polynomials coming from finite-dimensional representations of simple Lie algebras, with their limits and properties. In particular, the quantum A-polynomials, difference equations for colored Jones polynomials should be the same, just in non-compact case the equations are homogeneous, while they have a non-trivial right-hand side for ordinary Jones polynomials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.