Methods for Characterizing the Epigenetic Attractors Landscape Associated with Boolean Gene Regulatory Networks (1510.04230v1)
Abstract: Gene regulatory network (GRN) modeling is a well-established theoretical framework for the study of cell-fate specification during developmental processes. Recently, dynamical models of GRNs have been taken as a basis for formalizing the metaphorical model of Waddington's epigenetic landscape, providing a natural extension for the general protocol of GRN modeling. In this contribution we present in a coherent framework a novel implementation of two previously proposed general frameworks for modeling the Epigenetic Attractors Landscape associated with boolean GRNs: the inter-attractor and inter-state transition approaches. We implement novel algorithms for estimating inter-attractor transition probabilities without necessarily depending on intensive single-event simulations. We analyze the performance and sensibility to parameter choices of the algorithms for estimating inter-attractor transition probabilities using three real GRN models. Additionally, we present a side-by-side analysis of downstream analysis tools such as the attractors' temporal and global ordering in the EAL. Overall, we show how the methods complement each other using a real case study: a cellular-level GRN model for epithelial carcinogenesis. We expect the toolkit and comparative analyses put forward here to be a valuable additional re- source for the systems biology community interested in modeling cellular differentiation and reprogramming both in normal and pathological developmental processes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.