Number of rational points of symmetric complete intersections over a finite field and applications (1510.03721v1)
Abstract: We study the set of common F_q-rational zeros of systems of multivariate symmetric polynomials with coefficients in a finite field F_q. We establish certain properties on these polynomials which imply that the corresponding set of zeros over the algebraic closure of F_q is a complete intersection with "good" behavior at infinity, whose singular locus has a codimension at least two or three. These results are used to estimate the number of F_q-rational points of the corresponding complete intersections. Finally, we illustrate the interest of these estimates through their application to certain classical combinatorial problems over finite fields.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.