Topological semi-metals with line nodes and drumhead surface states (1510.02759v2)
Abstract: In an ordinary three-dimensional metal the Fermi surface forms a two-dimensional closed sheet separating the filled from the empty states. Topological semimetals, on the other hand, can exhibit protected one-dimensional Fermi lines or zero-dimensional Fermi points, which arise due to an intricate interplay between symmetry and topology of the electronic wavefunctions. Here, we study how reflection symmetry, time-reversal symmetry, SU(2) spin-rotation symmetry, and inversion symmetry lead to the topological protection of line nodes in three-dimensional semi-metals. We obtain the crystalline invariants that guarantee the stability of the line nodes in the bulk and show that a quantized Berry phase leads to the appearance of protected surfaces states with a nearly flat dispersion. By deriving a relation between the crystalline invariants and the Berry phase, we establish a direct connection between the stability of the line nodes and the topological surface states. As a representative example of a topological semimetal with line nodes, we consider Ca$_3$P$_2$ and discuss the topological properties of its Fermi line in terms of a low-energy effective theory and a tight-binding model, derived from ab initio DFT calculations. Due to the bulk-boundary correspondence, Ca$_3$P$_2$ displays nearly dispersionless surface states, which take the shape of a drumhead. These surface states could potentially give rise to novel topological response phenomena and provide an avenue for exotic correlation physics at the surface.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.