On initial direction, orientation and discreteness in the analysis of circular variables
Abstract: In this paper, we propose a discrete circular distribution obtained by extending the wrapped Poisson distribution. This new distribution, the Invariant Wrapped Poisson (IWP), enjoys numerous advantages: simple tractable density, parameter-parsimony and interpretability, good circular dependence structure and easy random number generation thanks to known marginal/conditional distributions. Existing discrete circular distributions strongly depend on the initial direction and orientation, i.e. a change of the reference system on the circle may lead to misleading inferential results. We investigate the invariance properties, i.e. invariance under change of initial direction and of the reference system orientation, for several continuous and discrete distributions. We prove that the introduced IWP distribution satisfies these two crucial properties. We estimate parameters in a Bayesian framework and provide all computational details to implement the algorithm. Inferential issues related to the invariance properties are discussed through numerical examples on artificial and real data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.