Papers
Topics
Authors
Recent
2000 character limit reached

Global well-posedness of an initial-boundary value problem for viscous non-resistive MHD systems

Published 28 Sep 2015 in math.AP, math-ph, and math.MP | (1509.08349v4)

Abstract: This paper concerns the viscous and non-resistive MHD systems which govern the motion of electrically conducting fluids interacting with magnetic fields. We consider an initial-boundary value problem for both compressible and (nonhomogeneous and homogeneous) incompressible fluids in an infinite flat layer. We prove the global well-posedness of the systems around a uniform magnetic field which is vertical to the layer. Moreover, the solution converges to the steady state at an almost exponential rate as time goes to infinity. Our proof relies on a two-tier energy method for the reformulated systems in Lagrangian coordinates.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.