Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Temporal Sigmoid Belief Networks for Sequence Modeling (1509.07087v1)

Published 23 Sep 2015 in stat.ML and cs.LG

Abstract: Deep dynamic generative models are developed to learn sequential dependencies in time-series data. The multi-layered model is designed by constructing a hierarchy of temporal sigmoid belief networks (TSBNs), defined as a sequential stack of sigmoid belief networks (SBNs). Each SBN has a contextual hidden state, inherited from the previous SBNs in the sequence, and is used to regulate its hidden bias. Scalable learning and inference algorithms are derived by introducing a recognition model that yields fast sampling from the variational posterior. This recognition model is trained jointly with the generative model, by maximizing its variational lower bound on the log-likelihood. Experimental results on bouncing balls, polyphonic music, motion capture, and text streams show that the proposed approach achieves state-of-the-art predictive performance, and has the capacity to synthesize various sequences.

Citations (84)

Summary

We haven't generated a summary for this paper yet.