Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Forward Backward Doubly Stochastic Differential Equations and the Optimal Filtering of Diffusion Processes (1509.06352v3)

Published 21 Sep 2015 in math.PR

Abstract: The connection between forward backward doubly stochastic differential equations and the optimal filtering problem is established without using the Zakai's equation. The solutions of forward backward doubly stochastic differential equations are expressed in terms of conditional law of a partially observed Markov diffusion process. It then follows that the adjoint time-inverse forward backward doubly stochastic differential equations governs the evolution of the unnormalized filtering density in the optimal filtering problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.