Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Visual Tracking via Inverse Nonnegative Matrix Factorization

Published 20 Sep 2015 in cs.CV | (1509.06003v3)

Abstract: The establishment of robust target appearance model over time is an overriding concern in visual tracking. In this paper, we propose an inverse nonnegative matrix factorization (NMF) method for robust appearance modeling. Rather than using a linear combination of nonnegative basis matrices for each target image patch in the conventional NMF, the proposed method is a reverse thought to conventional NMF tracker. It utilizes both the foreground and background information, and imposes a local coordinate constraint, where the basis matrix is sparse matrix from the linear combination of candidates with corresponding nonnegative coefficient vectors. Inverse NMF is used as a feature encoder, where the resulting coefficient vectors are fed into a SVM classifier for separating the target from the background. The proposed method is tested on several videos and compared with seven state-of-the-art methods. Our results have provided further support to the effectiveness and robustness of the proposed method.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.