A Survey on the Eigenvalues Local Behavior of Large Complex Correlated Wishart Matrices (1509.04910v1)
Abstract: The aim of this note is to provide a pedagogical survey of the recent works by the authors ( arXiv:1409.7548 and arXiv:1507.06013) concerning the local behavior of the eigenvalues of large complex correlated Wishart matrices at the edges and cusp points of the spectrum: Under quite general conditions, the eigenvalues fluctuations at a soft edge of the limiting spectrum, at the hard edge when it is present, or at a cusp point, are respectively described by mean of the Airy kernel, the Bessel kernel, or the Pearcey kernel. Moreover, the eigenvalues fluctuations at several soft edges are asymptotically independent. In particular, the asymptotic fluctuations of the matrix condition number can be described. Finally, the next order term of the hard edge asymptotics is provided.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.