Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-type spatial branching models for local self-regulation I: Construction and an exponential duality

Published 14 Sep 2015 in math.PR | (1509.04023v1)

Abstract: We consider a spatial multi-type branching model in which individuals migrate in geographic space according to random walks and reproduce according to a state-dependent branching mechanism which can be sub-, super- or critical depending on the local intensity of individuals of the different types. The model is a Lotka-Volterra type model with a spatial component and is related to two models studied in \cite{BlathEtheridgeMeredith2007} as well as to earlier work in \cite{Etheridge2004} and in \cite{NeuhauserPacala1999}. Our main focus is on the diffusion limit of small mass, locally many individuals and rapid reproduction. This system differs from spatial critical branching systems since it is not density preserving and the densities for large times do not depend on the initial distribution but mainly on the carrying capacities. We prove existence of the infinite particle model and the system of interacting diffusions as solutions of martingale problems or systems of stochastic equations. In the exchangeable case in which the parameters are not type dependent we show uniqueness of the solutions. For that purpose we establish a new exponential duality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.