Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions (1509.03803v2)

Published 13 Sep 2015 in math.CO

Abstract: The dual stable Grothendieck polynomials are a deformation of the Schur functions, originating in the study of the K-theory of the Grassmannian. We generalize these polynomials by introducing a countable family of additional parameters, and we prove that this generalization still defines symmetric functions. For this fact, we give two self-contained proofs, one of which constructs a family of involutions on the set of reverse plane partitions generalizing the Bender-Knuth involutions on semistandard tableaux, whereas the other classifies the structure of reverse plane partitions with entries 1 and 2.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.