The periodic cyclic homology of crossed products of finite type algebras (1509.03662v3)
Abstract: We study the periodic cyclic homology groups of the cross-product of a finite type algebra $A$ by a discrete group $\Gamma$. In case $A$ is commutative and $\Gamma$ is finite, our results are complete and given in terms of the singular cohomology of the strata of fixed points. These groups identify our cyclic homology groups with the \dlp orbifold cohomology\drp\ of the underlying (algebraic) orbifold. The proof is based on a careful study of localization at fixed points and of the resulting Koszul complexes. We provide examples of Azumaya algebras for which this identification is, however, no longer valid. As an example, we discuss some affine Weyl groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.