Papers
Topics
Authors
Recent
Search
2000 character limit reached

Empirical Big Data Research: A Systematic Literature Mapping

Published 10 Sep 2015 in cs.DL, cs.CY, and cs.DB | (1509.03045v2)

Abstract: Background: Big Data is a relatively new field of research and technology, and literature reports a wide variety of concepts labeled with Big Data. The maturity of a research field can be measured in the number of publications containing empirical results. In this paper we present the current status of empirical research in Big Data. Method: We employed a systematic mapping method with which we mapped the collected research according to the labels Variety, Volume and Velocity. In addition, we addressed the application areas of Big Data. Results: We found that 151 of the assessed 1778 contributions contain a form of empirical result and can be mapped to one or more of the 3 V's and 59 address an application area. Conclusions: The share of publications containing empirical results is well below the average compared to computer science research as a whole. In order to mature the research on Big Data, we recommend applying empirical methods to strengthen the confidence in the reported results. Based on our trend analysis we consider Volume and Variety to be the most promising uncharted area in Big Data.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.