Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analysis of an Arctic sea ice loss model in the limit of a discontinuous albedo (1509.00059v2)

Published 31 Aug 2015 in math.DS and physics.ao-ph

Abstract: As Arctic sea ice extent decreases with increasing greenhouse gases, there is a growing interest in whether there could be a bifurcation associated with its loss, and whether there is significant hysteresis associated with that bifurcation. A challenge in answering this question is that the bifurcation behavior of certain Arctic energy balance models have been shown to be sensitive to how ice-albedo feedback is parameterized. We analyze an Arctic energy balance model in the limit as a smoothing parameter associated with ice-albedo feedback tends to zero, which introduces a discontinuity boundary to the dynamical systems model. Our analysis provides a case study where we use the system in this limit to guide the investigation of bifurcation behavior of the original albedo-smoothed system. In this case study, we demonstrate that certain qualitative bifurcation behaviors of the albedo-smoothed system can have counterparts in the limit with no albedo smoothing. We use this perspective to systematically explore the parameter space of the model. For example, we uncover parameter sets for which the largest transition, with increasing greenhouse gases, is from a perennially ice-covered Arctic to a seasonally ice-free state, an unusual bifurcation scenario that persists even when albedo-smoothing is reintroduced. This analysis provides an alternative perspective on how parameters of the model affect bifurcation behavior. We expect our approach, which exploits the width of repelling sliding intervals for understanding the hysteresis loops, would carry over to other positive feedback systems with a similar natural piecewise-smooth limit, and when the feedback strength is likewise modulated with seasons or other periodic forcing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.