Counting Dirac braid relators and hyperelliptic Lefschetz fibrations (1508.07687v2)
Abstract: We define a new invariant $w$ for hyperelliptic Lefschetz fibrations over closed oriented surfaces, which counts the number of Dirac braids included intrinsically in the monodromy, by using chart description introduced by the second author. As an application, we prove that two hyperelliptic Lefschetz fibrations of genus $g$ over a given base space are stably isomorphic if and only if they have the same numbers of singular fibers of each type and they have the same value of $w$ if $g$ is odd. We also give examples of pair of hyperelliptic Lefschetz fibrations with the same numbers of singular fibers of each type which are not stably isomorphic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.